skip to primary navigationskip to content

Cambridge Biorepository for Translational Medicine

Support for Multidisciplinary Translational Research

Studying at Cambridge

 

Dr Mike Murphy

Research Theme

Targeting therapeutic and probe molecules to mitochondria, mitochondrial radical production and redox signalling

Reactive oxygen species (ROS) produced by mitochondria cause oxidative damage that impairs the ability of mitochondria to make ATP and to carry out their metabolic functions. They may participate also in cellular redox signalling pathways. One important aspect of our work is to investigate how oxidative damage to mitochondria contributes to human pathologies. We have worked out a way of targeting small bioactive molecules, such as antioxidants, to mitochondria in order to counter the effects of ROS and to examine the effects of doing so at cellular and whole animal levels. The bioactive molecule is attached chemically to a lipophilic cation such triphenylphosphonium. These cations accumulate selectively, first in the cytosol, driven by the plasma membrane potential, and then several-hundred fold in the matrix of mitochondria, driven by the membrane potential across the inner membrane. A second important aspect is to determine whether and how mitochondrial ROS alters the activities of proteins in putative signalling and protective pathways by reversibly modifying the redox state of critical protein thiols in mitochondria. We use a range of free radical and proteomic approaches to identify the proteins involved, and to identify the cysteine residues and any redox modifications. Finally, we take this information and use it to rationally design potential therapies for diseases that arise from mitochondria dysfunction. Currently our main focus for therapy is the ischaemia/reperfusion injury that arises from stroke and heart attack.